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MULTIPLICITIES OF DIHEDRAL DISCRIMINANTS 
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Dedicated to the memory of Helmut Hasse 

ABSTRACT. Given the discriminant dk of a quadratic field k, the number 
of cyclic relative extensions NJk of fixed odd prime degree p with dihedral 
absolute Galois group of order 2p, which share a common conductor f, is 
called the multiplicity of the dihedral discriminant dN = f 2(p- 1)dk . In this 
paper, general formulas for multiplicities of dihedral discriminants are derived 
by analyzing the p-rank of the ring class group mod f of k . For the special 
case p = 3, dk = -3, an elementary proof is given additionally. The theory 
is illustrated by a discussion of all known discriminants of multiplicity > 5 of 
totally real and complex cubic fields. 

INTRODUCTION 

Let p be an odd prime and KIQ a cyclic extension of degree p. Then it 
is well known [9, 15, 7] that the conductor of K must have the form f = 
pe * q, ... qt, where e = 0 or e = 2, t >0 and the qi are pairwise distinct 
rational primes satisfying qi _ 1 (mod p) for i = 1, ... , t. The discriminant 
of K is just a power of the conductor, dK = f P- I. If, for any positive integer 
f, the number of cyclic extensions KIQ of degree p which share the same 
conductor f is denoted by m(f), then 

m(f') = _1 (p - 1), 
f tIf 

where p = dimF (Qx (f )/Q x . Qx(f )P) = dimlFp(Syl, U(Z/fZ) ?p Fp) = t+w 
with Q x (f) = {r E Qx (r, f 1}, ={r E Q x I r _ 1 (mod x f )}, and 

w = 'e. Moebius inversion yields an explicit formula for m (f): 

m(pe qi * ... qt) = (p - )t+w1 

It is the aim of the present paper to establish similar formulas for multiplici- 
ties of discriminants in the case of non-Galois extensions LIQ of degree p with 
dihedral normal closure N of degree 2p. For the sake of illustration, the for- 
mulas are applied to discriminants with multiplicities up to 16 of non-Galois 
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cubic fields which occur in the most extensive recent numerical tables [10, 5, 
11]. 

1. CUBIC DISCRIMINANTS 

Assume that k is a fixed quadratic field with discriminant dk. If Njk is 
a cyclic cubic relative extension with conductor f and with absolute Galois 
group Gal(NjQ) S3, the symmetric group on three symbols, then [8, p. 578] 
f must have the form 

f = 3e.ql ...qt 
with 0 < e < 2, t > 0, and pairwise distinct rational primes qj 54 3 satis- 
fying q = (dk) (mod 3) for i = 1,..., t. Furthermore, the 3-exponent e 
is restricted to the values 0, 2 if dk +1 (mod 3), and to the values 0, 1 
if dk =3 (mod 9), but no restrictions arise for dk =-3 (mod 9). An in- 
teger f of this form will be called an admissible conductor for the quadratic 
discriminant dk. 

For any positive integer f, define the multiplicity m(dk, f ) of f with re- 
spect to dk to be the number of nonconjugate cubic fields LIQ with coinciding 
discriminant dL = f 2 * dk . Then the following general formula for the recur- 
sive determination of multiplicities of cubic discriminants holds. This result 
will be proved in a more general context in ?3. 

Theorem 1.1. Let f = 3e * q, * * qt be an admissible conductor for the quadratic 
field k with discriminant dk and 3-class rank p. Then 

m(dk, f') = !(3P+t+w 35_1) Z ~~~2 
f If 

where the sum runs over all divisors f ' of f . Here, 

if e=O, 

w= 2 if e =e 2 and dk _ -3 (mod 9), 
1 otherwise, 

and ( = dimF3(Ik,3(f)/Ik,3(f) n (Qx(f)kyfkx(f)3)), where kX(f) (resp. 

Qx(f)) denotes the numbers in kx (resp. Q X) which are coprime to f, lc}f = 

{y E kx I y_ 1 (mod X f )} is the group of generators of the ray mod f of k, 
and Ik,3 (f) = Ik,3 n kx(f ) with the group Ik,3 of generators a E k x of all 
principal ideals a6k which are cubes of ideals of k. 

2. PURE CUBIC DISCRIMINANTS 

First, the complete solution of the multiplicity problem for the special case 
of pure cubic discriminants is obtained in a totally elementary way with the aid 
of the following well-known relationship [4] between the normalized radicand 
D = m * n2 of a pure cubic field L = Q(,/?b), where m > n > 0 are squarefree 
coprime integers, and the conductor f of the corresponding relative extension 
Njk, 

= f 3mn if D ? +1 (mod 9) (field of Dedekind's 1st kind), 
mn if D +1 (mod 9) (field of Dedekind's 2nd kind). 



MULTIPLICITIES OF DIHEDRAL DISCRIMINANTS 833 

Theorem 2.1. Let f = 3e * q, - * t> 1 be an admissible conductor for the special 
quadratic discriminant dk = -3, i.e., 0 < e < 2, t > 0, and qj =$ 3 are 
arbitrary rational primes for i = 1, . .. , t . Put 

u = #{l < i < t [ qj +1 (mod 9)}, 
v = #{< - i < t | qj +2, +4 (mod 9)}. 

Then the multiplicity m(f) m(-3, f ) of the pure cubic discriminant 
-3. f 2 is given by 

(2t if e=2, 

m(3e -q, qt) u - 22Xv if e = 1, 

2u2 .XV-1 ife=O, 

where Xj - (21 + (-1 )j+ 1) for all j > -1. 
Moreover, the multiplicities of conductors with 3-exponents e = 0, 1 satisfy 

the relation 
m(q, ... qt) + m(3 * ql ... qt) = 2".1 

Proof. To see that all claimed conductors are really admissible for dk = -3, 
observe that dk --3 (mod 9) and that the condition q _ (dk) (mod 3) is 
satisfied by every prime q. 

First, the case e = 2 is treated separately. The relation f = 32 . q, * * qt is 
equivalent to f = 3mn, 3 j mn, and thus also to D _ 0 (mod 3). In this 
case, there are 2t+1 choices for the exponent systems 1 < w0, w1, ... , wt < 2 
in cubefree radicands D = 3.0 * q1 1 ... qJWt which all share the same value of 
mn = 3.q1 ..qt . But only one of the two systems (wo, ..., Wt) and (3 - 
wo, ..., 3 - wt) belongs to a normalized radicand. Hence, 

m(32 * ql q t) = 2 2t+1 = 2t. 

Second, the cases e = 1 and e = 0 are investigated simultaneously. The 
relation f = 3. q, ... qt is equivalent to f = 3mn, 3 t min, and further to 
D + ?2,+ 4 (mod 9), whereas f = ql'..qt is equivalent to f = min, 3 t 
mn, and also to D +1 (mod 9). In both cases, there are 2t choices for 
exponents 1 w1, .< . , Wt < 2 in cubefree radicands D = q *' ... qWt which all 
share the same value of mn = q1 ... qt., but some of them (D + I (mod 9)) 
give rise to conductor f = mn and the others (D -2, +4 (mod 9)) to 
conductor f = 3mn. Again, only one of the two systems (w1, ... , Wt) and 
(3 - w, I .. ., 3 - wt) belongs to a normalized radicand. (Both, the normalized 
and the nonnormalized radicand, are of the same Dedekind kind.) Therefore, 

m(q, ... qt) + m(3 * q, qt) = 2 2t = 2t-1. 

To separate these two multiplicities, it is convenient to fix a value u > 0 of 
the number of prime divisors q - 1 (mod 9) of D and to argue by induction 
with respect to the number v > 0 of prime divisors q + ?2, +4 (mod 9) of 
D. Obviously, u + v = t. 

Induction start, v = 0, 1: 
In the case v = 0, we have mn = q... qu with u > 1 and D +1 

(mod 9), whence 

Y-1 := m(q, . qu) =2U- I 



834 D. C. MAYER 

Inthecase v = 1,wehave mn=q ...qu qui+ and D=+2 +4 (mod 9), 
whence 

m(q ... ququ+i)= 0=YO, 

Y1 : m(3 * q, . qu * qu+l ) = 2u. 

Induction step, v -) v + 1: 
If the new prime factor qu+v+l +2, +4 (mod 9) and its square are mul- 

tiplied by a radicand D _ ?1 (mod 9), then there are generated two new 
radicands D.q'+v +2, +4 (mod 9) with 1 < wu+v+l < 2. However, if 
they are multiplied by a radicand D =_ +2, +4 (mod 9), then one of the two 
new radicands is congruent + 1 (mod 9) (the one, where quw+v+l represents the 
square of D in the group U(Z/9Z)/{+1} C(3)) and the other is congruent 
+2, +4 (mod 9). Thus, 

m(q, ...qu+v+,) = m(3 q, . qu+v) =: Yv, 
Yv+l := m(3 * q, . qu+v+,) = m(3 * ... qu+v) + 2 . m(q, .. qu+v) 

= Yv + 2Yv-i. 

Consequently, the numbers Yj (j > -1) satisfy a binary linear recursion, 
Yj+j = Yj + 2Y,_1 for j > 0, with initial values Y-1 = 2u-1 and YO = 0. This 
recursion can be solved by diagonalization of the corresponding matrix M in 
the equation 

(Y.+ ) 1 2) Y~) 

The characteristic polynomial of M is (denoting by I the identity matrix) 

det(x .I - M) = - x - 2 = (x + 1). (x - 2). 

The eigenspaces of M with respect to the eigenvalues -1 and 2 are 

ker(M +I)= -) ker(M -2 -I)=2 21 

and M becomes diagonal under the transformation 

T-' -M -T = 3 (1 1 I * (1O -1 1) = 0 2? \ 
Therefore, the solution of the recursion can be represented in the form 

(~&)= Mi. (YO)= T.A' * T1. (YO) ( j_1 )(Y_ )(Y_ ) 

= 3((1)J + 2+X2) for 1 > 0. 

Hence, the solution is Yj = 2u Xj with Xj : (21 + (-1)j+1) for all 1> 
-1. n 

Remark. The proof of Theorem 2.1 used a very special elementary technique 
which cannot be applied to other types of cubic fields. In the next section, this 
result will be rederived as a particular instance of a much more general formula, 
which is deduced by completely different methods, using ring class groups of 
quadratic number fields. 
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Examples. As an application, the minimal occurrences of some higher multi- 
plicities of pure cubic discriminants are determined. The first three cases appear 
in tables of complex cubic fields [1, 5, 12] which are ordered by discriminants. 
The further ones are constructed by means of Theorem 2.1, taking the smallest 
possible prime factors. These examples show that the normalized radicands as- 
sociated with a fixed discriminant of higher multiplicity are spread rather widely 
in a table of pure cubic fields which is ordered by radicands, such as [11]. 

1. m(f) = 2 for f = 32.2, dL = -972, occurs in [1], with associated 
radicands D= 6, 12, and e = 2, u = 0, v = 1. 

2. m(f) = 4 for f = 3 2.2.5, dL = -24 300, occurs in [12], with associ- 
ated radicands D = 30, 60, 90, 150, and e = 2, u = 0, v = 2. 

3. m(f) = 3 for f = 3.2.5.7, dL = -132300, occurs in [5], with 
associated radicands D = 70, 140, 490, and e = 1, u = 0, v = 3. 

4. m(f) = 8 for f = 32L2.5 .7, dL = - 1 190 700, occurs in [11], with 
associated radicands D = 210, 420, 630, 1050, 1260, 1470, 2100, 
2940, and e = 2, u = 0, v = 3. 

5. m(f ) = 5 for f = 3.2 L 5 L 7 11, dL = -16 008 300, occurs in [11], 
with associated radicands D = 770, 3850, 7700, 10780, 16940, and 
e=1, u=0, v=4. 

6. m(f ) = 6 for f = 3 .2.5 .7d17, dL = -38 234 700, occurs in [11], 
with associated radicands D = 1190, 2380, 8330, 11900, 20230, 
40460,ande=1, u=I,v=3. 

7. However, m(f) = 7 will never occur, since 7 is not a member of 
the sequence (Xj)j>-1 in Theorem 2.1. The same is true for m(f) = 

9, 13, 14, 15. 
8. m(f) = 16 for f = 32.2.5 .7. 11, dL = -144074700, occurs in [11], 

with associated radicands D = 2310, 4620, 6930, 11550, 13860, 
16170, 23100, 25410, 32340, 34650, 48510, 50820, 69300, 76230, 
80850, 97020, and e = 2, u = 0, v = 4. 

9. m(f) = 11 for f = 3.2.5.7.11.13, dL = -2 705 402 700, with as- 
sociated radicands D = 10010, 20020, 70070, 100100, 110110, 
260260, 350350, 550550, 650650, 700700, 910910, and e = 1, u= 
0, v=5. 

10. m(f) = 10 for f = 3.2.5.7.11.17, dL = -4626398700, with 
associated radicands D = 13090, 65450, 130900, 183260, 222530, 
287980, 458150, 719950, 1007930, 1112650, and e = 1, u = 1, 
v = 4. 

11. m(f) = 12 for f = 3.2.5.7.17.19, dL = -13802726700, with 
associated radicands D = 22610, 45220, 158270, 226100, 384370, 
429590, 768740, 791350, 859180, 1582700, 2690590, 3007130, and 
e=1, u=2, v=3. 

3. DIHEDRAL DISCRIMINANTS 

As before, assume that k is a fixed quadratic field with discriminant dk. 
With p an odd rational prime, let Njk be a cyclic relative extension of degree 
p with conductor f and absolute Galois group Gal(NIQ) Dp, the dihedral 
group of order 2p. Then f is a rational integer and [2] must have the form 

f =pe .ql *-qt 
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with 0 < e < 2, t > 0, and pairwise distinct rational primes qj 54 p sat- 
isfying q =(dL) (mod p) for i = 1,..., t. Furthermore, the p-exponent 
e is restricted to the values 0, 2 if p is unramified in k, and to the values 
0, 1 if p I dk, except for the special configuration where p = 3 and dk - -3 
(mod 9). An integer f of this form will be called a p-admissible conductor 
for the quadratic discriminant dk. 

For any positive integer f, define the p-multiplicity mp (dk, f ) of f with 
respect to dk to be the number of nonisomorphic fields LIQ of degree p shar- 
ing the same discriminant dL = f P -IdP -1)/2. By the translation theorem k 
of Galois theory, mp (dk, f ) is also the number of cyclic extensions Nl k of 
degree p with absolute group Gal(NIQ) Dp sharing the common conductor 
f. 
Remark. If f is not a p-admissible conductor for dk , then certainly mp (dk, f) 
= 0. But on the other hand, mp (dk, f ) may be zero even for a p-admissible 
conductor f for dk , as will be shown for infinite families of fields in Corollaries 
3.2 and 3.3. 

Denote by Jk (f ) the group of (fractional) ideals of k coprime to f, and by 
Wk,f = {a69k I a E QX(f) * k7X } the so-called ring mod f of k, where QX(f) 

denotes the numbers in Qx which are coprime to f, and k}< = {y E kx I y1 
(mod x f )} is the group of generators of the ray mod f of k. Then, by the 
Artin reciprocity law of class field theory [8], mp (dk, f ) can be interpreted as 
the number of subgroups Z of index p of k (f ) which contain 4k, f but 
not Wkk f for any proper divisor f 'I f, f' $: f . With the aid of this fact, the 
following formula for the recursive determination of multiplicities of dihedral 
discriminants can be derived. 

Theorem 3.1. Let f = pe .q, ... qt be a p-admissible conductor for a given 
quadraticfield k with discriminant dk and with p-class rank p = Pk(P). Then 

Z mp(dk, f) = 1(Pt - 1), 
f If 

where the sum runs over all divisors f' of f . Here, 

if e=O, 

w= 2 if ee=2, p=3, dk=-3(mod 9), 

1 otherwise, 

and 5 = 5(f) = dimFp(Ikp(f )/Ikp(f ) n (Qx(f )kxkx(f )P)), where the num- 
bers in kx which are coprime to f are denoted by kx(f ), and Ik,p(f ) = 
Ikp n k X (f ) with the group Ik, p of generators a E k X of all principal ideals 
a6xk which are pth powers of ideals of k. 

Proof. Since the ring class group mod f of k, J.k (f )f~k f , is an abelian 
group, its p-elementary subgroup is isomorphic to J.k (f )/(9k,f . Jk (f )P) - 
Hence, any subgroup Z of index p in Jk (f ) which contains 4k, f must 
in fact be an intermediate group Mk, f -J.k (f )P < 0' < Jk (f ). Therefore, 

Z mp(dk, f )#= #{ < Jk(f ) I (Jk(f ):V X)=P , Ak, f k(f )P < I} 
f If 
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is exactly the number of the hyperplanes (subspaces of codimension 1) of 
the p-elementary ring class group mod f of k, viewed as a vector space 
over the finite field Fp . But this number equals P 1 (pP' - 1), where p' = 

dimFp(>k(f )/Jk, f .Ak(f )P) is the p-rank of k4(f ) / k, f . 

If 3k (f ) = Ok n Jk (f ) denotes the principal ideals of k coprime to f, 
then the factorization relation of elementary abelian p-groups, 

Ok' (f ) /l5k (V ) *'k' ( )P 

(-k(f )/JIk,f %Yk(f ) ) / (35k(f ) 4k(f ) /Ik,f *Yk(f )) 

is equivalent to a direct product relation 

-4 V -WSk ,f * -4 V ) 
- (--4 ) lykf V -4 ) ) X (Yk (V -4k )P I-Wk,f 

* 
--"k 

) 
), 

where the first factor is isomorphic to the p-elementary class group of k. Fur- 
ther, the homomorphism k x 3-k, at H-' a69k induces an isomorphism 

4 (f ) %Yk(f )P/gik,f *yk(f )P kX (f)/(Qx() . k x Ik,p(f)) 

Finally, it is well known that the local description of the congruence relation 
mod x f yields an isomorphism 

kX(f)/Qx(f) .kx 

(k x (f )/1k7 (Qx(f)/Qx(f ) n k7) U(6k /f6lk) / U(Z/fZ) 

and that the p-elementary subgroup of U(6'k/gf6k) / U(Z/fZE), which is isomor- 
phic to kx (f )/Q?x (f ) * kl} * k x (f )P, has p-rank equal t + w [2, 6, 8], whence 
p '=p+t+w-r5 with 

J =dimes (Ik p(f )lIk p(f) n(Qx(f ).k;x.kx(f )P )). C1: 

Remarks. 1. For totally real dihedral fields, a further decomposition of the 
essential index pa into two parts is useful for practical purposes: 

Pa = (Ik,p(f) : Ik,p(f )n(Qx (f)k Ukkx(f)P)) ) (Uk: Uknf(Qx(f)kikx(f)P)), 

where the first part involves only the principal pth powers of ideals which rep- 
resent p generating classes of order p of k, and the second part concerns 
exclusively the fundamental unit of k. Here, Uk denotes the unit group of k. 
2. The proof of Theorem 3.1 and the previous remark show that generally 
5(f ) < min(p, t + w) (in particular, 5(f ) = 0 when p = 0) in the cases 
dk < -3 or p > 5, dk = -3, and 5(f ) < min(p + 1, t + w) in the cases 
dk > 0 or p = 3, dk = -3. 

Note. It should be pointed out that the proof of Theorem 3.1 does not use the 
full ray class group mod f of k but only the ring class group mod f of k, 
which is obtained from the former by factoring out the part invariant under 
the generating automorphism of Gal(kjQ) [6, 8]. Otherwise, there would be 
counted all cyclic extensions Njk of degree p sharing the common conductor 
f, those with group Gal(NjQ) Dp as well as those with group Gal(NjQ) 
C(2) x C(p) compositea of k with cyclic extensions KJQ of degree p). 
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The only case where the sum in the formula of Theorem 3.1 consists of a 
single term is the unramified case f = 1, which was treated in [8, p. 581] and 
[14] already. 

Corollary 3.1. The number of unramified cyclic extensions Njk of degree p is 

mp(dk,1)= 1(pP- 1). 

Proof. If f = 1, that is, t = 0 and w = 0, then we have (5(f) = 0, since 
(5(f ) < min(p + 1, t + w) = 0, or also simply since k7f = kx . f1 

In all other cases, single multiplicities can be obtained by Moebius inversion. 

Theorem 3.2 (General multiplicity formula when w < 1). Assume that f = 
pe q1, qt > 1 with w < 1 is a p-admissible conductor for the quadratic field 
k, put qt+l = pe when w = 1, and define Jmax = max{J(qj1 ... qis) O 0 < s < 

t+w, 1<il < ..< is< t +wl. Then 

mp(dk, q, . qt+w) 

= pP *1* [(p_ l)t+w-1 

+ Hi (_ l)t+w-s .Ps ; pma-(l qlS I 
s=O <i < * <iS<t+W 

Proof. Observe that, for fixed p and dk, the general formula in Theorem 3.1, 

AMp(dk, fi) = 1~ (p~ - _1), 

f z 

can be viewed as the sum relation Zf , If m (f') = n (f ) between two integer- 
valued functions n(f ) = p 1 (pP+t(f)+W(f>)-3(f) - 1) and m(f') = mp(dk, f') . 
Hence, an application of the Moebius inversion formula yields an expression 
for a single multiplicity, 

t+W 

M~q, qt~)=o ll..<S:+ ( J q, .. 
qtiw )n(q .. qis) 

s=0 1 <il <- .. <iS <t+W j..qs 
t+W 

= ~ (.l)t+w-s. _ 1 *PS.p(qjq - 

Z=0 1 <piPI <-<is<t+w 

O t+W 

- lZE (1 )t+w-s 1. 
- s=O _<i< ...<is<t+w 
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Now the second double sum equals i+=' (-1)t+w-s. (t+W) = 0; hence, 

m(q ***qt+w) ppP. 
pi p15max 

t+w 

* E(_l~+W -sS 
s 

Ls=O l<il< ...<is<t+w 

t+w 
+ E E (_1)t+w-s Pps *(pmax3 ( (qls) -.1)] s 

d=c ( <il..) w<is<t+w 

where the first double sum equals ct+on dut+W-s ps5(q ) w 1i_ Wt+ tu 

Corolary .2 (he seciacass=of (ta =0 1we w p - 1) Ltw fhus 

e q, ... qtw > 1 with . I eapamsil odco o h udai 

feld k, pt qt+i pp _ we P 1max 

*(pI l)t+W 

t+W 

<+w ((q) 0 t+w-s 
ps * (ptnmaxe o(qf1 ."d pm1e 

S=O 1 <il< ...-<iS <t+W 

This formula can be simplified further, since the indices for composed con- 
ductors, (q qi5) with 0 <s< t+w and <il< <is< t+w, canbe 
determined from those for prime conductors, i (qe) with I < i < t + w . 

Corollary 3.2 (The special cases of 1dax = 0, a when w < 1). Let fa 
pe pq qt > m with w < 0 be a p-admissible conductor for the quadratic 
field k, put qt+l = pe when w = 0, suppose that fdiax < 2, and put u = 
#q1 q< i < t+w I f(qr)a O= , i.e., v := t+w - u is the number of "bad" primes. 

1 (The case without constraints from principal pth ideal powers [8, p. 582]). 
If u = t + w, then 1h(ax = 1 and 

Mp(dk, q. * . I qt+w) = pP , (p _ i)t+w-t 

2 (Restrictions caused by principal pth ideal powers). If O < u < t + w - 1 

then 05max = I and 

MP (dk , q, 
... 

qt+w ) = pP . (p -1).(P-1) --1)I 

In particular, mp A q, ... qt+w ) = O for v = 1I. 

Proof. 1. If u = t +w, then 6 (qj) = O for all I < i < t +w , and consequently 
6 (qj,.. qis) =O0 for all O < s< t +w and I < il < ..< is < t +w , whence 
fdmax = 0. In this case, the formula of Theorem 3.2 immediately degenerates to 

mp (dk , q, qt+w ) = pP . (p -1 )t+W-1 1 

2. If O < u < t +w - I1, then 6 (qj) = I for some I < i < t +w , and thus 
Jdmax = I1. In this case, it turns out that 

#l< il < ... < is < t + w I J(ql ...r qisnl = 1UA 
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for all 0 < s < t + w, whence 

Mp (dk q, *.*.t qt+w ) 

=pp. 
I 
- * (p - 1 )t~ 

t+W bumax - (qjl .. qis )- 

+Z(_l)t+w-s pS p - 1 

s=O 1<i< -l..<is<t+wj 
t+W 

pp1 [(p _ I)t+w-1 + (_l)t+w-Z (P) - (-l)U .pl [ s=O I=OS 

1~~~~~~~~~~ 

PP - R[(p - l)t+W-I + (_1)t+W-U(p 
- l)U] 

p 

= pP . (p - )U . (P- l)t+W- 1-u + (- )t+W-U 

The following array shows the multiplicities mp(dk, q1 ... qt+w) in depen- 
dence on the total number t + w > 0 of prime divisors of the conductor f > 1, 
and on the number 0 < u < t + w of those "nice" primes which do not cause 
restrictions, for the special case p = 3 and p = 0. For positive 3-rank p > 0 
of k, the numbers must only be multiplied by 3P , provided that still 15max < 2. 

t+w u= 0 1 2 3 4 5 6 7 8 

1 0 1 
2 1 0 2 
3 1 2 0 4 
4 3 2 4 0 8 
5 5 6 4 8 0 16 
6 11 10 12 8 16 0 32 
7 21 22 20 24 16 32 0 64 
8 43 42 44 40 48 32 64 0 128 

Example 1. For pure cubic fields L = Q(,YP), the formulas with w = e < 1 of 
Theorem 2.1 in the previous section, which were proved by elementary methods, 
can be reobtained here as the special case p = 3, dk = -3, p = 0, and 
u = #{1 < i < t + w I qj +1 (mod 9)}, since for any 1 < i < t + w the 
condition 5(qj) = 0 is equivalent to 3 E QX(q) kqx kI(qj)3 and hence to 

q I+1 (mod 9): 

M3( - 3, , ... qt+w) = 2u. 2v+w-1 - 1__)v+w 
- 

3 

where v := t - u and v + w is the number of bad primes. 

Finally, supplementary formulas must be established for the special case p = 

3, dk=-3 (mod 9), w=2. 



MULTIPLICITIES OF DIHEDRAL DISCRIMINANTS 841 

Theorem 3.3 (General multiplicity formula when w = 2). Let f = 32. q1 ... qt 
with w = 2 be a 3-admissible conductorfor the quadraticfield k. Then 

m3(dk, 32 q, ... qt) 

t 2~~~~~ =P E s(- 1)t-s *35 E (3 2-c5(3 -qj qj,) - 3 1 -c(3 qj, .. ,) . 

s=O 
2 

Proof. An application of the Moebius inversion formula to the sum relation 
n(f) = Ef If m (f ') in Theorem 1. 1, where n(f) = (3P+t(f)+w(f)-3(f) - 1) 
and m(f') = m3(dk, f'), yields an expression for the single multiplicity of the 
conductor f=32 * q .qt: 

m(32 . q, . .. qt) = U(3*q ').n(3' . qj,. qjj) 
v=O s=O I<il < ...<i,<t 

3 
I1 sj 

. j 

where the Moebius function takes the values 
0 O if v = 0, 

1 ( t-S+1 if v=1, 

-)t-S if v=2. 

Consequently, 

m(32q, ... qt) = [(l)t- s+ l . 5(3 qj. q - 
q) 

S=o I<il< ..<is<t 

+ (-1 )t-S. * 3P * 35+*`2 2*q, l ~ ~ 3S+2. 35(32 *qj qs)- 

= 3PZ(1 )t-S . 3S E -(32-J(32 - qji) qif) - 31-(3 ql -- qis 

s-O I<il< ...<is<t 

Corollary 3.3 (The special cases of 3max = 0, 1 when w = 2). Let f = 

32.q ... qt with w = 2 be a 3-admissible conductor for the quadratic field 
k . Further, redefine 0max = max<j(3v s qj. qjs) I O < v < 2, O < s < t, 1 < 

ii < ... < iS < t}, suppose that 6max < 2, and put u = #11 < i < t I 6(q1) = 0}. 
Then 

m3(dk, 32 q1 * *qt) 
3P+1.2t if 3(32)=0, u-t, 

I 3P+1 .2u+l1 .I(2t-u- (.4)t-U-1) if3(32) = O 0< u < t-1, 

3P+1 .2u. 1(2t-u - (_1)t-u) if (3) = 0, 3(32) = 1, 

3P . 2t if 3(3) = 1. 

The first case is the unconstrained one [8, p. 582] where 6max = 0, in the second 
case the multiplicity is zero for u = t - 1, in the third case for u = t, and the 
fourth case is actually independent of u. 

Proof. 1. If 3(32) = 0, u = t, then clearly 6max 0, and the formula in 
Theorem 3.3 becomes 

m3(dk, 3 * q ... qt) = 3P () .35 * 2(3 
- 

3) = 3P+1 *2t 
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2. However, if 3(32) = 0 but 0 < u < t - 1, then certainly 6,max = 1, 
and 3(32.qj. iqs) = 3(3qj1 .q.) = 3(qj, ...q1) for all 0 < s < t and 
1< il < . < is < t. In this case, 

m3(dk, 3 2 ql *.q t) 

t 
= 3P Z )t-s .3s Z 2 --(ql. qls) - 31 -(qI. qls)) 

s=O 3 .<ilP<' . <is<t 
t 

= 3p E(-l) t-s* 3s A, 2(3 - 1) E 31 -((qll 
.. 

qS) 
s=O 1 <il < ... <is<t2 

t ~~~~~~t1 
= 3p [E(_1) - 1.3 \s ) + (O)t'Z(-l)u .s3s () .(3 1)] 

= 3P.(2t + (-1)t-u.2u.2) 

3. In the case 3(3) = 0, 3(32) = 1, we have 3(3q, qi s) = (qj . is) 
and 3(32.qj1... qi)=1 forall O<s<t and 1<il< ...<is<t whence 
3max = 1 and 

t 

m3(dk, 3 ql ... qt) = 3P )ts3s Z 1 3 31 
s=O I<il< ..<is<t 

= 3p I (_1t-s* 3s - t _lt-E la-* () 

= 3P (1)S3 (3 3 - 1) . 

in There 2.1 of te previo s seto a e ebanda t he spca cas 

=3P E -) 3 (iu.s 
(- 1F3.3.--Il)i s 1U= 3 

=3P.-(2t -Q._1)t-U.-2u) 

4. If, finally, 3 n(3) = , then 3)(3 .qi) =1 and 3(32 ... qi= 1 for 
allO0< s< t and l <i I< ..< is <t,wwhence 6max =1 and 

t IA 1 

M3(dk , 3*q1I- ..q) = 3P( ).3s. (J -. (3- 1) = 3P.2t 

5=0 

Example 2. For pure cubic fields L =Q(VXD), the formula with w =e = 2 
in Theorem 2.1 of the previous section can be reobtained as the special case 
dk =-3 , p =0, and 3(3) =1 : 

The various formulas of ?3 are illustrated in the Supplements section at the 
end of this issue by a discussion of all known discriminants of multiplicity > 5 
of totally real and complex cubic fields, which occur in the most extensive recent 
numerical tables [10], [5]. 

Final Note. It should be particularly emphasized that all the calculations which 
are necessary for the determination of the multiplicity mp (dk, f ) of a dihedral 
discriminant dL fP- ld(P 1)/2 can be carried out entirely in the underlying k 
quadratic field k. 
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Given a quadratic field k with p-class rank P = Pk (p) and discriminant 
dk, and given a p-admissible conductor f for dk, we have to find p prin- 
cipal pth powers a1, ... , ap of ideals prime to f which represent p gener- 
ating classes of order p of the p-elementary class group of k, and addition- 
ally a fundamental unit q of k if dk > 0 or dk = -3. Then Ik p(f) = 

(a,, ... ., ap( , q)) . VX (f )P. 
Next, we must examine successively, if q E ?Qx (f) * k X (f )P and if 

ai E (ce, ,... , ci- 1) Uk ? x (f ) kIfx-k x(f)P for i= 1 ... ,P , 

whence we will be able to determine 3(f ') for all divisors f' If and finally the 
multiplicity mp(dk, f ) of dL = f P-lIdP-l)/2, by means of Theorem 3.2 or 
3.3. 

In this manner it is possible to construct complete tables of complex or to- 
tally real dihedral discriminants up to a given bound, IdLI < B, and for a 
fixed value of the prime p, by the computation of the p-ranks of ring class 
groups mod f of quadratic fields k, varying the discriminants dk and the 
p-admissible conductors f for each discriminant dk . 

In particular, approximations can be determined for the asymptotic densities 
of dihedral discriminants for various primes p > 5, similar to the densities 
of Davenport and Heilbronn [3] for p = 3. As D. Shanks pointed out in his 
review [13] of [1], the convergence of these approximations to the asymptotic 
limits would be rather slow, because the really high multiplicities, which con- 
tribute the essential part to the limit, unfortunately occur in very high ranges 
of discriminants. 

A drawback of the proposed method is that it does not seem to be suitable 
for obtaining generating polynomials for the non-Galois subfields L of dihedral 
fields. 

Example. For any two positive integers m and B, let np(m, B) denote the 
number of complex dihedral discriminants dL = f P- l-d(P- I)/2 of multiplicity 
mp(dk, f) = m, which are bounded by IdLI < B-(P- 1)2. (Observe that dihedral 
discriminants are always complete ((p - 1)/2)th powers.) 

To make the ideas in the final note more concrete, we have computed the 
303 968 quadratic discriminants in the range -106 < dk < 0 and determined 
the class numbers and p-class ranks P = Pk (P) of the corresponding imaginary 
quadratic fields k for p = 3, 5, 7. With the aid of this information, we can 
calculate the exact numbers np(m, B) for m = 1 , p - 1 , p + 1, and for any 
given upper bound B < 106. 

(a) According to Corollary 3.1, the first component of np (1l, B) is the 
number of quadratic fields k with p-rank p = 1 and discriminant 

IdkI = IdLI21(p-1) < B, 

i.e., single unramified cyclic extensions (absolute class fields) NIk of degree p 
with conductor f = 1. 

By Corollary 3.2,1, the second component is the number of ramified cyclic 
extensions (ring class fields) N of degree p over quadratic fields k with p-rank 
p = 0 (and thus 3 = 0) and discriminant 

IdkI = IdL/fp 12(p-1) = IdLI21(p-l)/f2 < B/f2 
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with a single prime divisor ql of the conductor f, such that t + w = 1 . To 
compute this number, we examine each of the relevant quadratic discriminants 
dk for admissible prime conductors ql + 1 (mod p), also taking into consid- 
eration the possibility of p If, w = 1. 

In the case of p = 3, we must further add the number of pure cubic dis- 
criminants (dk = -3) of multiplicity 1, which can be evaluated by counting 
primes and products of up to three primes below certain bounds, according to 
Theorem 2.1, taking into account the parameter values 

(e, t) =(2, 0) and 
(e, u, v) = (1, 0, 1), (1, 0, 2), (0, 1, 0), (0, 0, 2), (0, 0, 3). 

p (p-1)/2 B np(l,B) f=1 f>1 
dk <-3 dk =-3 

3 1 103 125 = 84 + 35 + 6 
104 1 396 = 1 034 + 343 + 19 
105 14565 = 11286 + 3215 + 64 
106 149204 = 118455 + 30559 + 190 

5 2 103 58 = 52 + 6 
1o4 665 - 617 + 48 

105 7099 = 6686 + 413 

1o6 73 252 = 69 365 + 3 887 

7 3 103 31 = 30 + 1 
1o4 435 = 411 + 24 

105 4 709 = 4 503 + 206 

106 49607 = 47595 + 2012 

The result n3(1, 106) = 149204, in comparison to the number 148 709 
claimed in [5, Table 5.2, p. 321], shows that 495 complex cubic discriminants 
of multiplicity 1 were missing from the original version of [5]. 

The series of single complex dihedral discriminants starts with -23 for 
p = 3, with +2209 = (_47)2 for p = 5, and with -357911 = (-71)3 for 
p = 7. The minimal discriminants of arbitrary quintic fields with signature 
(1, 2), resp. septic fields with signature (1, 3), are somewhat smaller and not 
((p - 1)/2)th powers: + 1 609, resp. - 184 607. Unramified extensions are 
dominating, 79.5% for p = 3, 94.7% for p = 5, and 95.9% for p = 7, and 
this effect even seems to increase with the value of the prime p. The minimal 
examples of the rare ramified extensions are dk = -1 1 with f = 2 for p = 3, 
dk=-15 with f=5 for p=5,and dk=-7 with f=7 for p= 7. 

(b) By Corollary 3.2,1, np(P - 1, B) is the number of (p - l)-tuplets of 
ramified cyclic extensions N of degree p over quadratic fields k of p-rank 
p = 0 and discriminant Idk I < B/f2 with two prime divisors qj, q2 of the 
conductor f, such that w < 1. 

But for the special case p = 3, the number of pure cubic discriminants of 
multiplicity 2 must be added. According to Theorem 2.1, we determine this 
number by counting primes and products of at most four primes up to certain 
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bounds, taking into consideration the parameter values 

(e, t)= (2, 1) and 
(e, u, v) = (1, 1, 1), (1, 1, 2), (0, 2, 0), (0, 1, 2), (0, 1, 3). 

It might be of interest to list explicitly the root discriminants IdL12/(p1) for 
the few encountered (p - 1 )-tuplets of dihedral fields with two prime divisors 
of the conductor f, if p = 5, 7 (for p = 3, they start with the well-known 
1836 [1]). 

There are 20 cases for p = 5: 

105875, 121000, 180500, 287375, 305767, 315375, 315875, 360375, 
363 000, 496 375, 529 375, 589 875, 605 000, 650 375, 771 375, 786 500, 
814088, 840500, 841000, 902500, 

and 7 cases for p = 7: 

57 967, 288 463, 576 583, 634 207, 695 604, 985 439, 994 903. 

p (p- 1)/2 B np(p- 1, B) f > 1 
dk <-3 dk =-3 

3 1 103 1 = 0 + 1 
104 12 = 10 + 2 
105 167 = 157 + 10 
106 1 683 = 1 639 + 44 

5 2 106 20 = 20 
7 3 105 1 = 1 

106 7 = 7 

Here, the authors of [5] announce the value n3(2, 106) = 1 762 instead of 
1 683. In fact, the multiplicities of the superfluous 79 discriminants must 
necessarily be greater than 2. 

(c) The determination of np (p, B) is much more difficult, since it involves 
the complete treatment of various cases of p-tuplets of ramified cyclic exten- 
sions N of degree p over quadratic fields k of p-rank p > 1 and discriminant 
IdkI < B/f2 with conductor f > 1, according to Corollary 3.2. If p = 3, then 
further contributions arise from Corollary 3.3. Here, 3 > 1 is possible, and 
thus the principal pth powers a,, ... , ap of ideals of k must be examined 
for each of the relevant quadratic discriminants dk . 

(d) By Corollary 3.1, np (p + 1, B) is the number of quadratic fields k with 
p-rank p = 2 and discriminant Idk < B, i.e., (p + 1)-tuplets of unramified 
cyclic extensions NIk of degree p with conductor f = 1 . 

In the case of p = 3, where exceptionally not only (p2 - l)/(p - 1) = p + 1 
but also (p - 1)2 = p + 1 , we must additionally consider the number of ramified 
cyclic extensions N of degree p over quadratic fields k of p-rank p = 0 
and discriminant Idk I < B/f 2 with three prime divisors q1, q2, q3 of the 
conductor f, such that w < 1. 

A further additive component for p = 3 is the number of pure cubic discrim- 
inants of multiplicity 4, which can again be evaluated with the aid of Theorem 
2.1 by counting products of up to five primes below certain bounds, taking into 
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account the parameter values 

(e, t)= (2, 2) and 

(e, u, v) = (1, 2, 1), (1, 2, 2), (0, 3, 0), (0, 2, 2), (0, 2, 3). 

p (p - 1)/2 B np(p+ 1, B) f = 1 f > 1 
dk < -3 dk = -3 

3 1 io4 7 - 7 + 0 + 0 
lo5 216 = 214 + 0 + 2 
106 3216 3 190 + 15 + 11 

5 2 i05 39 - 39 
1o6 398 - 398 

7 3 105 1 _ 1 
l 06 97 97 

The result n3(4, 106) = 3 216, in comparison to the number 3 189 given in 
[5], reveals the lack of 27 complex cubic discriminants of multiplicity 4 in the 
original version of [5]. 

(e) Finally it should be mentioned, that the authors of [5] announced the 
extremely exciting number n3(5, 106) = 7, which caused a lot of confusion. 
However, our Example 5 after Theorem 2.1 shows that the minimal occurrence 
dL = -16 008 300 of multiplicity 5 (which is only possible for pure and certain 
totally real cubic fields) lies considerably outside the range of the computations 
in [5]. 
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